Honeycomb-inspired design delivers impact protection


Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a new energy-absorbing structure based on polyamide (PA) 11 to better withstand blunt and ballistic impact. The technology, called negative stiffness (NS) honeycombs, can be integrated into car bumpers, military and athletic helmets and other protective hardware. The technology could have major implications for the design and production of future vehicles and military gear to improve safety according to its developers.

The new NS honeycomb structures are reportedly able to provide repeated protection from multiple impacts, offering more durability than existing honeycomb technology found in a range of products from automobiles to aircraft. The UT Austin team's research on the innovative structure was published online in Integrated Materials and Manufacturing Innovation in May.

"Whether you're serving our country in uniform, playing in a big game, or just driving or biking to work, the potential for multiple collisions or impacts over time - however big or small - is a reality," said mechanical engineering professor Carolyn Conner Seepersad. "We believe that this technology, when constructed in future helmets and bumpers, could reduce or even prevent many of the blunt-force injuries we see today." Seepersad led the work along with UT Austin research scientist Michael Haberman.

Read more