Lead author Mr Heyou Zhang, a PhD candidate, said: "Conventional nanofabrication methods normally produce 2D nanostructures. With the ability to assemble in both vertical and horizontal directions and with spatial control of the nanoparticles on the surface, this method provides far more opportunities to build and manufacture nanoscale structures."
Although the manuscript focuses on assembly of gold nanocrystals, the technique has been applied to semiconductor quantum dots, magnetic nanoparticles and organic nanoparticles.
The next goal for the research is the creation of a single quantum dot "on-off" switch, which can form part of a logic gate or memory pixel for high-density information storage.
However, there is already interest from industry partners in other areas too.
"We can use assembled gold nanocrystals arrays as a plasmonic pixel, which is a colour display unit with high purity and colour saturation," Heyou said.
"It provides very distinct colour with angle or polarization-dependent properties, which has potential as a security feature or in medical imaging."
Heyou feels the approach has great potential as a universal nanomaterial assembly method.
He said: "We can use these particles to build up reconfigurable metal lenses, such as the lenses on your phone.
"The thickness of the lens on your phone camera is limited by optical geometries, but with this method you might be able to shrink it down to micrometre size."
The Centre is looking for partners to help scale-up the novel EPD process.
Senior author Professor Paul Mulvaney, Director of the ARC Centre of Excellence in Exciton Science, said: "Heyou has found a novel approach to large scale fabrication for nanomaterials. This deposition method solves a fundamental roadblock for nanotechnology and creates a viable pathway for miniaturisation of both optical and electronic devices."