The material scientists in Jena have now developed a calcium phosphate cement in which any cracks do not develop into catastrophic damage. Instead, the material itself seals them. The reason for this is carbon fibres that have been added to the material.
"Firstly, these fibres significantly increase the damage tolerance of the cement, because they bridge cracks as they form and thus prevent them from opening further," Müller explains. "Secondly, we have chemically activated the surface of the fibres. This means that as soon as the exposed fibres encounter body fluid, which collects in the openings created by the cracks, a mineralisation process is initiated. The resulting apatite - a fundamental building block of bone tissue - then closes the crack again."
The Jena scientists have simulated this process in their experiments by deliberately damaging the calcium phosphate cement and healing it in simulated body fluid. This intrinsic self-healing ability - and the greater load-bearing capacity associated with fibre reinforcement - could considerably expand the areas in which bone implants made of calcium phosphate cement can be used, which could possibly also include load-bearing areas of the skeleton in the future.