"The production process of the hydrogel can directly be adapted by the industry, especially since the source materials are industrially produced at low cost," Helmut Cölfen explains. Once the material has dried, it takes on the distinctive qualities of plastic, as it is both durable and pliable at the same time. This makes it a suitable replacement for conventional plastics in dry applications, for example in electronic components. A further development of this substance might be cover material, which should not, however, affect the recycling process. The special swelling capacity combined with its hardness after drying makes the material suitable in building applications to fill cracks.
In contrast to biominerals, which are hard once they are finished, e.g. bones or teeth, the hydrogel is pliable. In addition to examining natural processes, the research group around Helmut Cölfen is now very interested in systematically changing the properties of such gels to produce other "mineral plastics" for specific applications. Future research projects will also consider possible medical applications for this new class of substance. The researchers will test other minerals as source material and they have planned to use polyaspartic acid as a potential cross-linking agent. This acid is completely biodegradable.
SourceHydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bio-Inspired Materials for "Mineral Plastics", Shengtong Sun, Li-Bo Mao, Zhouyue Lei, Shu-Hong Yu and Helmut Cölfen. Angewandte Chemie International Edition (DOI: 10.1002/anie.201602849). (GD)