Scientists discover how essential methane catalyst is made

Scientists discover how essential methane catalyst is made

New ways to convert carbon dioxide (CO2) into methane gas for energy use are a step closer after scientists discovered how bacteria make a component that facilitates the process. Recycling CO2 into energy has immense potential for making these emissions useful rather than a major factor in global warming. However, because the bacteria that can convert CO2 into methane, methanogens, are notoriously difficult to grow, their use in gas production remains limited.

This challenge inspired a team of scientists led by Professor Martin Warren, of the University of Kent's School of Biosciences, to investigate how a key molecule, coenzyme F430, is made in these bacteria.

Although F430 – the catalyst for the production process – is structurally very similar to the red pigment found in red blood cells (haem) and the green pigment found in plants (chlorophyll), the properties of this bright yellow coenzyme allow methanogenic bacteria to breathe in carbon dioxide and exhale methane.

By understanding how essential components of the process of biological methane production, methanogenesis, such as coenzyme F430 are made scientists are one step closer to being able to engineer a more effective and obliging methane-producing bacterium.

References

Simon J. Moore, Sven T. Sowa, Christopher Schuchardt, Evelyne Deery, Andrew D. Lawrence, José Vazquez Ramos, Susan Billig, Claudia Birkemeyer, Peter T. Chivers, Mark J. Howard, Stephen E. J. Rigby, Gunhild Layer & Martin J. Warren, Elucidation of the biosynthesis of the methane catalyst coenzyme F430, Nature 2017, doi:10.1038/nature21427